My main focus the past few days has been Cups & Balls, as well as some general handling for the balls, sponge, coins.

As always I practice cards, picked up a new trick I would like to now the source of, I only know it as the Interactive Flip.  It can be found here on youtube

More interesting in the comments, is the algorithm, which allows you to play with the trick, and explore different way so of presenting and being impromptu with it. Its a nice lesson in finding the principle behind a trick, more so than just another trick.

Quoted in the comments by “Amila Fernando“:

Nt = Total Number of Cards (Including 4-face up cards)

So, Nt = 4*n + 4′   ; n=1, 2, 3, 4…….n
Here 4’= 4 face up cards
First Flip-Down or Down Flip is a must
Then selection of cards for flipping (Sf) = 2 * K (k =1, 2, 3, ….n); divisibles of Nt and EVEN
For Example:
Nt = 20 +4′ = 24 cards
Sf = 2, 4 ,6, 8, 12 including first Flip-Down as a MUST
2 cards, 4 cards, 6 cards, 8 cards or 12 cards can be selected for Flip-DOWN
so, For Nt = 24+4′, Sf = 2, 4, 14, including First Flip-Down as a Must
so For Nt =28+4, Sf = 2, 4, 8, 16, including First Flip-Down as a Must
After first Flip-Down, any order or selection is possible either from 4 then to 2 or 8 then to 4 as per interest.
Everything goes in Binary Form, that is why you have to select 1 card, 2 card packets, 4 card packets, 6 or 8 card packets so if flipped whole binary number is reversed. Finally when divided into two piles one pile will have 0s and 1s so will the other one but when one pile is turned and put on the other 0s become 1s while tallying with the rest.
You can use an excel sheet for Nt= 4+4′ = 8 cards, and do flipping and jot it down on an excel and see the variation in binary form.
A less interesting to me, but possible to others comment was this one:
For a Deck of cards, the same thing can be done in a different combination. Take out all the Four kinds of ACES, KINGS and QUEENS (total number of cards 12 here) Then stick them face up in the rest of the 40 cards and follow the instructions of Mr. Mismagg Finally you get all the 12 cards face up. irrespective of 1, 2 and 4 card pack flipping.